837 research outputs found

    On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units

    Full text link
    Deep feedforward neural networks with piecewise linear activations are currently producing the state-of-the-art results in several public datasets. The combination of deep learning models and piecewise linear activation functions allows for the estimation of exponentially complex functions with the use of a large number of subnetworks specialized in the classification of similar input examples. During the training process, these subnetworks avoid overfitting with an implicit regularization scheme based on the fact that they must share their parameters with other subnetworks. Using this framework, we have made an empirical observation that can improve even more the performance of such models. We notice that these models assume a balanced initial distribution of data points with respect to the domain of the piecewise linear activation function. If that assumption is violated, then the piecewise linear activation units can degenerate into purely linear activation units, which can result in a significant reduction of their capacity to learn complex functions. Furthermore, as the number of model layers increases, this unbalanced initial distribution makes the model ill-conditioned. Therefore, we propose the introduction of batch normalisation units into deep feedforward neural networks with piecewise linear activations, which drives a more balanced use of these activation units, where each region of the activation function is trained with a relatively large proportion of training samples. Also, this batch normalisation promotes the pre-conditioning of very deep learning models. We show that by introducing maxout and batch normalisation units to the network in network model results in a model that produces classification results that are better than or comparable to the current state of the art in CIFAR-10, CIFAR-100, MNIST, and SVHN datasets

    Trends in asthma mortality in Brazil in the 0-4 and 5-34-year age groups

    Get PDF

    Model Agnostic Saliency for Weakly Supervised Lesion Detection from Breast DCE-MRI

    Full text link
    There is a heated debate on how to interpret the decisions provided by deep learning models (DLM), where the main approaches rely on the visualization of salient regions to interpret the DLM classification process. However, these approaches generally fail to satisfy three conditions for the problem of lesion detection from medical images: 1) for images with lesions, all salient regions should represent lesions, 2) for images containing no lesions, no salient region should be produced,and 3) lesions are generally small with relatively smooth borders. We propose a new model-agnostic paradigm to interpret DLM classification decisions supported by a novel definition of saliency that incorporates the conditions above. Our model-agnostic 1-class saliency detector (MASD) is tested on weakly supervised breast lesion detection from DCE-MRI, achieving state-of-the-art detection accuracy when compared to current visualization methods

    Pre and Post-hoc Diagnosis and Interpretation of Malignancy from Breast DCE-MRI

    Full text link
    We propose a new method for breast cancer screening from DCE-MRI based on a post-hoc approach that is trained using weakly annotated data (i.e., labels are available only at the image level without any lesion delineation). Our proposed post-hoc method automatically diagnosis the whole volume and, for positive cases, it localizes the malignant lesions that led to such diagnosis. Conversely, traditional approaches follow a pre-hoc approach that initially localises suspicious areas that are subsequently classified to establish the breast malignancy -- this approach is trained using strongly annotated data (i.e., it needs a delineation and classification of all lesions in an image). Another goal of this paper is to establish the advantages and disadvantages of both approaches when applied to breast screening from DCE-MRI. Relying on experiments on a breast DCE-MRI dataset that contains scans of 117 patients, our results show that the post-hoc method is more accurate for diagnosing the whole volume per patient, achieving an AUC of 0.91, while the pre-hoc method achieves an AUC of 0.81. However, the performance for localising the malignant lesions remains challenging for the post-hoc method due to the weakly labelled dataset employed during training.Comment: Submitted to Medical Image Analysi
    corecore